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Irradiation of a metal by lasers or swift heavy ions causes the electrons to become excited. In the vicinity of
the excitation, an electronic temperature is established within a thermalization time of 10–100 fs, as a result of
electron-electron collisions. For short times, corresponding to less than 1 ps after excitation, the resulting
electronic temperature may be orders of magnitude higher than the lattice temperature. During this short time,
atoms in the metal experience modified interatomic forces as a result of the excited electrons. These forces can
lead to ultrafast nonthermal phenomena such as melting, ablation, laser-induced phase transitions, and modified
vibrational properties. We develop an electron-temperature-dependent empirical interatomic potential for tung-
sten that can be used to model such phenomena using classical molecular dynamics simulations. Finite-
temperature density functional theory calculations at high electronic temperatures are used to parametrize the
model potential.
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I. INTRODUCTION

Exposure to lasers or swift ion irradiation can cause elec-
trons in a metal to become highly excited. An electronic
temperature is established within a thermalization time of
�10–100 fs,1,2 as a result of electron-electron collisions.
This is significantly shorter than the time required to estab-
lish equilibrium with the lattice, which occurs on the time
scale of picoseconds. After the electronic thermalization, but
before equilibration with the lattice, the electronic tempera-
ture Te in the vicinity of the excitation may be of orders of
magnitude higher than the lattice temperature Tl. This is re-
ferred to as a “hot-electron cold lattice” situation.

The initial excitation energies Ex prior to electron ther-
malization are typically in the region of 1–10 eV per atom,
corresponding to Ex /kB in the range of 104–105 K �kB is
Boltzmann’s constant�. Ballistic transport of energy away
from the excited region during the thermalization period
means that when an electronic temperature is established, it
is generally lower than this. However for a short period of
time after thermalization, electronic temperatures may be in
the range of several 104 K. These temperatures, which are
similar in magnitude to the Fermi temperature, are sufficient
to modify the interatomic forces between atoms. The tem-
perature decreases rapidly as heat diffuses through the elec-
trons to colder parts of the metal, bringing the excited region
and the rest of the metal into a global equilibrium.

The effects of highly excited electrons on the dynamics of
atoms in a solid are often separated into two distinct catego-
ries. Thermal effects, occurring on time scales on the order
of picoseconds, are the result of the transfer of kinetic energy
from the electrons to the lattice via electron-phonon interac-
tions. These effects are governed by the time scale for
electron-lattice equilibration �=Cl /g �where g is known as
the electron-phonon coupling strength and Cl is the specific-
heat capacity of the lattice�. The kinetic energy transferred to

the lattice from the excited electrons may then be sufficient
to cause damage of the material or even melting. Nonthermal
effects occur on shorter �sub-picosecond� time scales and
arise as the result of the modification of the interatomic
forces in the material when electrons are excited. By modi-
fying the interactions between the atoms, the excited elec-
trons induce near instantaneous forces on the atoms. It then
takes a short time for these forces to have an effect on the
motion of the atoms. The modified forces have the potential
to give rise to a variety of ultrafast phenomena. These in-
clude nonthermal melting, ablation, modified vibrational
properties, and laser-induced phase transitions. The possibil-
ity of nonthermal mechanisms was initially proposed by Van
Vechten et al.3 Many examples can be found in the review by
Bennemann.1 The dividing line between the time scale for
thermal and nonthermal effects is typically regarded as being
around 1 ps.4

The occurrence of nonthermal effects is more widely es-
tablished in covalently bonded insulators and semiconduc-
tors than metals. Electronic excitations in these materials can
promote electrons from the valence band to the conduction
band. Such excitations tend to persist longer �have longer
lifetimes�, allowing more time for the modified forces to
have an effect on atomic motions. In metals, the excitation
energy disperses rapidly through the system, and it is often
assumed that the time for which a sufficient concentration of
highly excited electrons exists is too short to affect atomic
motion significantly.

Ultrashort �femtosecond� pulsed laser experiments have
provided experimental evidence for nonthermal effects in
semiconductors.4–7 These experiments point toward changes
occurring a short time after irradiation with intense pulses at
high fluence. This is different from thermal melting of the
material that can be induced at lower fluence, occurring on
longer time scales. There has been some experimental evi-
dence that similar phenomena occur in metals. Experiments
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by Guo et al.8 indicated that laser radiation resonant with the
gap between two parallel bands in Al can bring about a non-
thermal structural phase transition. Workers from the same
group observed similar effects brought about by nonresonant
radiation in Au.9

The theoretical treatment of nonthermal effects requires
an explicit model for the electronic structure of the material
and how this changes when electrons occupy energy levels
with a nondegenerate distribution. Finite-temperature density
functional theory �DFT� can be used to study the properties
of materials at high electronic temperatures. Silvestrelli
et al.10,11 explicitly demonstrated nonthermal melting of Si
using ab initio molecular dynamics simulations. Changes in
the electronic structure may also be calculated using tight-
binding theory. Tight-binding molecular dynamics has been
used to simulate laser-induced melting in Si,12 ultrafast abla-
tion of graphite films,13 and laser-induced femtosecond
graphitization of diamond.14

Insights into nonthermal effects can also be obtained with
static calculations. Recoules et al.15 used density functional
perturbation theory �DFPT� to calculate phonon-dispersion
curves in gold and aluminum at high electron temperatures.
A study by Botin and Zerah16 employed ab initio methods to
predict how formation enthalpies of monovacancies change
at high electronic temperatures. Zijlstra et al.17 used finite-
temperature density functional theory to predict that a
pressure-induced structural phase transition in As may also
be induced by an ultrashort laser pulse.

These approaches are much more computationally expen-
sive than classical molecular dynamics �MD� simulations
�using effective empirical interatomic potentials� and are
therefore restrictive in terms of the system sizes and time
scales that can be simulated. We develop a simplified de-
scription of the modification of interatomic forces in transi-
tion metals with highly excited electrons. The aim is to con-
struct an empirical interatomic potential that can be used in
classical molecular dynamics simulations, which accounts
for changes in the forces atoms in a metal experience as a
result of elevated electronic temperatures. This will enable
the simulation of nonthermal effects on larger time and
length scales. The electronic temperature features as a vari-
able parameter in the potential developed here. An empirical
interatomic potential was constructed by Recoules et al.15 to
simulate gold at a fixed electronic temperature of kBTe
=6.5 eV. The ability to vary the electronic temperature con-
tinuously means that the potential developed here could be
used in simulations in which the temperature changes during
the simulation itself. This would enable atomistic simulations
of metals in highly nonequilibrium situations, such as laser-
and swift heavy-ion irradiation, to predict structural modifi-
cations by electronic excitation.18

Tungsten �W� is a particularly heat resistant metal and is
being proposed as a candidate material for plasma-facing
components in fusion reactors.19 The high binding energy
and melting point of tungsten stem from the roughly half-
filled d band. In this sense W shares characteristics with the
other transition metals in groups VB and VIB.

In order to construct the interatomic potential, we begin
by performing static finite-temperature DFT calculations on
a perfect lattice of W at different volumes. The aim is to

obtain information about the metal at high electronic tem-
peratures and use this to develop and parametrize an
electron-temperature-dependent empirical potential. This is
similar to the approach suggested by Zeria and Bottin in Ref.
16. After discussing the DFT calculations in Sec. II, we will
introduce the model on which the empirical potential is
based in Sec. III. Fitting of this potential to reproduce the
DFT data is discussed in Sec. IV. We conclude in Sec. V with
a general discussion.

II. TUNGSTEN AT HIGH ELECTRON TEMPERATURES

A. Finite-temperature density functional theory

Mermin20 generalized the Hohenberg-Kohn theorem un-
derlying density functional theory to electrons at finite tem-
peratures by proving that the electronic grand potential is a
unique functional of the equilibrium electron density. By
constructing approximate free-energy functionals, the equi-
librium free energy for electrons in a material at different
electronic temperatures can be estimated. As discussed
above, the thermalization of excited electrons typically takes
of the order of 10–100 fs. In this work we do not attempt to
reproduce the nonthermal nature of the electrons in the early
stages after excitation. The electrons in the excited region are
treated as being in a local thermal equilibrium with a well-
defined temperature Te. The effects of the space and time
dependence of Te are neglected. In this context nonthermal
refers to the situation where the electrons have a well-defined
temperature Te that is different from the lattice temperature
Tl.

The electronic free energy may be expressed as

F = E − TeS . �1�

The energy E consists of the usual terms in a DFT energy

E = Ek + EeZ + EH + Exc + EZZ, �2�

where Ek, EeZ, EH, Exc, and EZZ are the kinetic, electron-core
interaction, Hartree, exchange-correlation, and core-core in-
teraction energies, respectively. At finite temperatures, E is
an average taken over the thermal distribution of states. The
entropy S is given by the formula for independent particles
occupying single-particle states21

S = − 2kB�
i

�f i ln f i + �1 − f i�ln�1 − f i�� , �3�

where the sum is over all one-electron eigenstates, and f i is
the occupation of state i. At thermal equilibrium, the states
will be populated according to a Fermi-Dirac distribution
f��i�= �1+e��i−��/kBTe�−1, where �i is the energy of eigenstate i,
and � is the chemical potential.

The one-electron eigenstates correspond to solutions of a
single-particle Schrödinger equation,

�−
�2

2m
�2 + Veff�r���i = �i�i, �4�

where �i are the Kohn-Sham orbitals with eigenenergies �i.
The single-particle effective potential is Veff�r�=VZ+VH
+Vxc, where VZ, VH, and Vxc are the ionic, Hartree, and
exchange-correlation potentials.
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The electron density that minimizes the free-energy func-
tional is

��r� = 2�
i

f i	�i�r�	2. �5�

This clearly depends on Te due to the occupation numbers f i.
Since the effective Hamiltonian depends on the electron den-
sity ��r� through the effective potential Veff�r�, and the elec-
tron density ��r� depends on Te, the effective Hamiltonian
itself depends on the electron temperature Heff�Te�. For this
reason the energy eigenvalues �i and the density of states
calculated using finite-temperature DFT depend on the elec-
tronic temperature Te, as do all quantities that depend in any
way on ��r�.

A useful way of rewriting the DFT energy E is

E = �
i

f i�i −
1

2
EH −
 ��r�Vxcdr + Exc + EZZ. �6�

The first term, which is a sum over one-electron eigenener-
gies �i, is the band energy Eband. The second term corrects for
the double counting of the electron-electron interaction en-
ergy in the single-particle treatment. The third term subtracts
the energy arising from the exchange-correlation potential
�defined as Vxc=�Exc /��� and the fourth term adds the cor-
rect exchange-correlation energy Exc. The third and fourth
terms are necessary because in general Exc��Vxc��r�dr. The
final term is the core-core interaction energy.

Each term in E depends on the electronic temperature
with the exception of the ion-ion repulsion EZZ. The first
term does so as a result of changes in the occupation num-
bers f i and the eigenvalues �i. The second, third, and fourth
terms depend on electron temperature due to changes in the
electron density ��r�. It should be noted that in principle the
exchange-correlation functional used for the evaluation of
Exc should depend on temperature, but the approximate func-
tional used here is independent of Te.

In the empirical tight-binding band model,22 the four last
terms �E−Eband� are grouped together into a sum of repulsive
pairwise potentials, which are empirical and fitted to experi-
mental values of lattice constant, cohesive energy, and bulk
modulus. Eband makes an attractive contribution to the inter-
atomic forces. We will make use of this partitioning of the
energy in the development of the electronic temperature de-
pendent model in Sec. III.

B. Technical details

We have performed static finite-temperature DFT calcula-
tions on a perfect lattice of W at different volumes for a
range of electron temperatures from 300 up to 80 000 K.
Only the 5d46s2 valence electrons have been treated explic-
itly. This means that excitations from core electrons into the
valence band cannot be accounted for. Even for the very high
electron temperatures of interest here, the probability of
these excitations is negligible, as the highest core states are
separated from the valence band by approximately 40 eV.

The Perdew-Burke-Ernzerhof23 generalized gradient ap-
proximation �GGA� was used for the exchange-correlation

functional Exc. The projector-augmented-wave �PAW� �Ref.
24� implementation of DFT was performed using the VASP

code,25,26 with a plane-wave cutoff of 223 eV and a
Monkhorst-Pack mesh of 11	11	11 k points. As these cal-
culations are done for a perfect lattice they involve only one
atom explicitly. Fifty bands were used to ensure that there
were enough states at sufficiently high energies to sample the
full Fermi-Dirac distribution effectively. This number of
bands ensures that even at the highest electronic tempera-
tures there are still bands at high energy that are fully unoc-
cupied.

C. Results from finite-temperature DFT calculations

Results for the electronic free energy F as a function of
volume for electronic temperatures from 1000–80 000 K
are summarized in Fig. 1. The free-energy curves themselves
shift toward more negative values with increasing Te. This
shift is dominated by the entropic contribution to the free
energy −TeS. The energy E against volume is plotted for
different electronic temperatures in Fig. 2. These curves shift
upward as Te increases, as higher energy states are popu-
lated.

As we are interested in forces, the shape of the free-
energy curves is of more significance than constant shifts.
Between 300 and 20 000 K the position of the free-energy
minimum, corresponding to the equilibrium lattice param-
eter, shifts to larger values. A minimum in the free energy
ceases to exist at a temperature between 20 000 and
30 000 K. This indicates that if the solid is free to do so it
would expand. This would occur, for example, at a surface
excited by a laser pulse. When the system is constrained to a
fixed volume, this manifests itself as an increase in the pres-
sure.

The electronic pressure is related to the derivative of the
electronic free energy with respect to volume P=−�F /�V.
The circular points in Fig. 4 show the electronic pressure
calculated from the derivative of the DFT free energy at the
equilibrium volume corresponding to 300 K. The energetic

1.0�103K

8.0�104K

10 20 30 40 50
�70

�60

�50

�40

�30

�20

�10

0

V ��3�atom�

F
�e

V
�a

to
m
�

FIG. 1. DFT free energy against volume. The lines correspond
to electronic temperatures Te= �0.1,0.5,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8�
	104 K. The arrow indicates increasing temperatures. The free
energy shifts downward with increasing Te. The vertical line is at
Veq300; the equilibrium volume at Te=300 K.
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and entropic contributions to the pressure are also shown
�see squares and triangles in Fig. 4�.

Bottin and Zerah16 found that the change in pressure P
with electronic temperature makes an important contribution
to changes in the enthalpy of forming monovacancies at dif-
ferent electronic temperatures. An increase in the pressure �at
fixed volume� is clearly seen with increasing electronic tem-
perature. It is seen that the increase is dominated by the
entropic contribution to the free energy. The energetic con-
tribution initially becomes more negative with increasing Te.

Above Te=30 000 K it is seen that the free energy is
repulsive in nature. It is worth noting the different effects this
may have under different conditions. At fixed volume, the
purely repulsive interactions can lead to increased melting
temperatures15 and increased vibrational frequencies.15 These
effects arise if the modified forces �even if they are purely
repulsive� make it harder to move atoms out of their equilib-
rium positions. When the volume is free to change, as, for
example, near a surface, the repulsions will lead to rapid
expansion of the surface layer into the vacuum.

It is worth noting that the loss of the free-energy mini-
mum occurs at a significantly lower temperature in tungsten
than that reported for gold by Recoules et al.,15 which was
above 60 000 K. This difference can be explained by ob-
serving that the Fermi energy in noble metals occurs in the
s-p band portion of the density of states, where the density of
states is very low. In transition metals such as W, the Fermi
energy lies in the d band portion of the density of states,
where the density of states is higher, and with a number of d
band states still unoccupied. This leads to a more drastic
effect on smearing of the Fermi-Dirac distribution in W than
Au. More subtle effects take place in Au due to modified
screening behavior as d band electrons are excited into the
s-p band, causing changes in the shape of the density of
states.15

In Sec. III we will introduce a simplified model aimed at
reproducing the effects observed here. This will be used to
construct an interatomic potential for W that depends on the
electronic temperature Te.

III. MODEL INTERATOMIC POTENTIAL

Finnis-Sinclair potentials have been utilized successfully
for many years in modeling transition metals. These poten-
tials are empirical in that they contain parameters that are fit
to reproduce certain quantities measured experimentally or
calculated from first-principles calculations. Our aim is to
develop a method that utilizes existing empirical potentials
that are successful under normal conditions �in the absence
of electronic excitations� and modify these to account for
changes that occur at high electronic temperatures. This
means that an existing empirical potential, in this case the
Finnis-Sinclair potential for W,27 serves as the starting point
for the potential developed here. This ensures that under nor-
mal conditions, when the electronic temperature is low, the
potential reproduces the properties it was initially designed
to reproduce.

A. Finnis-Sinclair potential

The general form for the potential energy in embedded
atom model �EAM� potentials is given by

Etotal = �
i

Femb��i� +
1

2�
i�j

V�rij� , �7�

where rij is the distance between atoms i and j, and the sums
run over all N atoms in the system. The second term, which
is a pairwise sum, is the repulsive part of the potential en-
ergy. The first term is the cohesive part comprising a sum of
terms involving Femb: the embedding function. This many-
body interaction takes as its argument an “effective density”
�i represented by a pairwise sum

�i = �
j�i


�rij� . �8�

In the Finnis-Sinclair potential, the cohesive embedding
function takes the form

Femb��i� = − A��i, �9�

where A is a constant. Several different models share this
form of embedding function but use different forms for the
functions V�r� and 
�r�. In the Finnis-Sinclair-type
potentials27,28 both of these are described by polynomial
functions. Parameters that are used to empirically fit the po-
tentials to reproduce physical quantities �such as the binding
energy, lattice parameter, thermal-expansion coefficient, or
defect formation energies� enter in terms of the constant A
and constants in the polynomial coefficients of the functions

�r� and V�r�.

B. Second-moment approximation

One line of reasoning leading to the particular form taken
by the attractive part of the Finnis-Sinclair potentials is the
second-moment approximation in tight-binding theory. The
electrons associated with each atomic site i may be described
by a local density of states di�E�. The local density of states
refers to valence electrons that are important in determining
the bonding behavior. The local density of states allows the
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FIG. 2. DFT energy against volume. The lines correspond to
electronic temperatures Te= �0.1,0.5,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8�	104 K.
The arrow indicates increasing temperatures. The energy shifts up-
ward with increasing Te. The vertical line is at Veq300.
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contribution to the band energy Eband made by the electrons
at atomic site i to be written as29

Eband
�i� = 2


−�

EF

�E − �i�di�E�dE , �10�

where EF is the Fermi energy, �i is the center of gravity of
the local density of states di�E�, and the factor of 2 accounts
for spin degeneracy. Note that Eq. �10� is a Te=0 expression,
making use of a degenerate Fermi-Dirac distribution.

Ackland et al.30 showed that if the density of states scales
as di�E�= �1 /Wi�d�E /Wi�, where Wi is a parameter describing
the width of the density of states, and assuming local charge
neutrality �i.e., a constant number of electrons at each atomic
site�, then the cohesive band energy is proportional to the
width of the density of states irrespective of the shape of the
density of states. This allows simple models to be con-
structed for the evaluation of the band energy. An example is
the rectangular density-of-states model that was developed
by Friedel31,32 to describe the narrow d band contribution to
the valence band in transition metals.

Consider a rectangular model for the local density of
states. This consists of a top-hat function di�E� centered at
E=�i, with a width Wi and an area corresponding to Na
electronic states �Na=5 for a d band�. The function takes the
value Na /Wi for energies 	E−�i	
Wi /2 and zero otherwise.
The local charge neutrality condition demands that each site
i is occupied by Ne electrons. This is expressed as

Ne = 2

�i−Wi/2

EF

di�E�dE =
2Na

Wi
�EF − �i + 
Wi

2
�� . �11�

The Fermi energy EF takes the same value at all atomic sites
so Eq. �11� is an equation for the center of gravity �i of the
local density of states at each atomic site i or more precisely
the energy difference �i−EF,

�i − EF =
Wi

2
−

NeWi

2Na
. �12�

This value for �i ensures that there are Ne electrons at each
site. Using this result, in the evaluation of the integral �10�
for a rectangular density of states, gives band energy contri-
bution from atomic site i as

Eband
�i� = −

NeWi

4Na
�Na − 2Ne� . �13�

If the number of electrons Ne at each site is fixed then the
band energy contribution is proportional to the width Wi of
the local density of states.

The second-moment theorem29 relates the width of the
local density of states, as measured by its second central
moment �i

�2�, to a sum of squares of hopping integrals be-
tween atom i and surrounding atoms,

�i
�2� = 


−�

�

�E − �i�2di�E�dE = 5�
j�i

�2�rij� , �14�

where �2�rij� is an average square of the hopping integrals
between atomic orbitals on atoms i and j. The hopping inte-
grals, describing tunneling of electrons between atomic sites,

fall off rapidly with the distance between two atoms. As
atoms move closer together, increased tunneling leads to a
widening of the local electronic energy levels, giving rise to
a wider local density of states. Since the band energy is
proportional to the width �as in Eq. �13��, an increased den-
sity of atoms surrounding a particular atom i leads to a more
negative contribution to the cohesive band energy Eband

�i� . This
is encoded in the relation,

Eband
�i� � Wi � ��i

�2��1/2. �15�

This relation underlies the square-root form for the embed-
ding function of the Finnis-Sinclair model in Eq. �9�. This
connection implies a proportionality between the empirical
local density function and the second moment of the local
density of states �i��i

�2�. Although the functions 
�rij� that
give rise to �i are obtained empirically, this relation also
implies a connection between 
�rij� and the hopping inte-
grals �2�rij�.33

C. Model interatomic potential for high electronic
temperatures

We now develop a model to extend the Finnis-Sinclair
potential to high electronic temperatures. Using the decom-
position of energy in Eq. �6�, the electronic free energy may
be written as

F = �
i

f i�i −
1

2
EH −
 ��r�Vxcdr + Exc + EZZ − TeS .

�16�

The band energy Eband and the entropic contribution to the
free energy −TeS will be dealt with in terms of a modified
electron-temperature-dependent embedding function
Femb��i ,Te�. The remaining terms are grouped together into
sum of pairwise potentials. We begin by developing a model
for how the band energy Eband

�i� and the entropy S change with
electronic temperature.

1. Band energy

The valence electron density of states in transition metals
may be described as a superposition of a broad s-p band and
a narrow d band.32,34 The Fermi energy lies within the d
band. In transition metals, especially with near half-filled d
orbitals such as tungsten, the cohesive energy is dominated
by the d-orbital contribution to the band energy. For this
reason, second-moment model treatments often consider the
d band contribution of the energy only.

At high electronic temperatures, electrons may occupy a
wide range of energy states lying above the d band. This
means the model density of sates used here must account for
a range of states lying in the s-p band that are unoccupied at
Te=0.

For simplicity, we adopt a rectangular band model for the
local density of states. The d band contribution to the density
of states consists of a top-hat function centered at E=�i, with
width Wi and height hi=Na /Wi. It has already been estab-
lished that at Te=0 the band energy in this model is given by
Eq. �13�. At finite electronic temperatures, the states are
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populated according to a nondegenerate Fermi-Dirac distri-
bution f�E�. The d band contribution to the band energy
within this model is calculated as

Ed band
�i� = 2

Na

Wi



�i−Wi/2

�i+Wi/2

f�E��E − �i�dE , �17�

where f�E� is the Fermi-Dirac distribution f�E�= �1
+e�E−��/kBTe�−1, and � is the chemical potential.

At high electronic temperatures, additional states above
the d band need to be accounted for. To achieve this, we
extend the rectangular d band with a constant density of
states at the same height hi=Na /Wi, for all energies E��i
+Wi /2. This “extension” is intended to account for the free-
electronlike s-p states that lie above the d band. The contri-
bution to the band energy from these states is calculated
using

Es-p band
�i� = 2

Na

Wi



�i+Wi/2

�

f�E��E − �i�dE . �18�

This is the same integral as Eq. �17� but over a different
range. The total band energy contribution from atom i is
Eband

�i� , which equals the sum of Eqs. �17� and �18�. After
evaluating the integrals, this can be expressed as

Eband
�i� = − NakBTe ln�1 + e��−�i+Wi/2�/kBTe�

−
2Na

Wi
�kBTe�2Li2�− e��−�i+Wi/2�/kBTe� , �19�

where Li2 is the dilogarithm function defined by35



0

� x

ex−� + 1
dx = − Li2�− e�� . �20�

We will assume that local charge neutrality is maintained.
This may be violated for a brief time after electronic excita-
tion, but it is assumed that it is restored quickly during the
electron thermalization time. Local charge neutrality requires
the number of electrons at each atomic site to remain fixed at
Ne. The number of electrons is calculated by integrating over
the product of the density of states and the occupation of
states

Ne = 2
Na

Wi



�i−Wi/2

�

f�E�dE , �21�

which results in

�i − � =
Wi

2
− kBTe ln�eNeWi/2NakBTe − 1� . �22�

The chemical potential � must be the same everywhere. If
the chemical potential were different at a given atomic site,
this would cause a flow of electrons and violation of local
charge neutrality. To maintain local charge neutrality, the
center of gravity of the local density of states at each site
shifts according to Eq. �22�. It can be seen that as Te→0, this
reduces to Eq. �12� for �i−EF, as expected. It can also be
confirmed that as Te→0, the band energy in Eq. �19� reduces
to that of the rectangular model in Eq. �13�.

It should be noted that although in a one-electron treat-
ment �such as DFT� the density of states changes with elec-
tronic temperature, the simple model used here assumes the
density of states itself to be independent of temperature. The
temperature dependence in this model is brought about only
by changes in the Fermi-Dirac occupation of states.

2. Entropy

The contribution to the entropy from electrons at site i is
calculated according to Eq. �3�, using the same model for the
density of states as above

S�i� = − 2kB
Na

Wi



�i−Wi/2

�

�f ln f + �1 − f�ln�1 − f��dE ,

�23�

where f = f�E� relates to the Fermi-Dirac distribution as be-
fore. The integral may be evaluated to give

S�i� = − 2kB
Na

Wi
�− kBTe

�2

3
−

�2

kBTe
+

�

kBTe
��i − 
Wi

2
��

− ��i − 
Wi

2
��ln�1 + e��i−�−Wi/2�/kBTe�

+ � ln�1 + e−��i−�−Wi/2�/kBTe�

− 2kBTeLi2�− e��i−�−Wi/2�/kBTe�� . �24�

To ensure local charge neutrality, �i−� takes the same value
as in Eq. �22�. With the correct value of �i, both S�i� and Eband

�i�

are independent of �, which is an arbitrary constant in �i, the
energy corresponding to the center of gravity of the local
density of states.

Since Eq. �24� is complicated, it is worth looking at the
entropy in various limits. At low electronic temperatures, the
Fermi-Dirac distribution is highly degenerate. The integrand
in Eq. �23� is zero at all energies except for a region of width
�kBTe around the Fermi energy EF, where f�E� changes
abruptly from 1 to 0. This allows us to approximate the in-
tegral as S�−2kB�Na /Wi��kBTe ln 0.5�. The entropic contri-
bution to the pressure is Ps= +Te�S /�V. In this limit, this
scales as PS�−�kBTe /Wi�2��Wi /�V�. Since �Wi /�V�0, this
makes a positive contribution, increasing with temperature.
In the opposite limit, when kBTe� �NeWi /2Na�, the occupa-
tion of states is low at all energies f�E��1, and the first
term dominates the integral �23�. In this limit S�
−kBNe ln�NeWi /2NakBTe�. The entropic contribution to the
pressure is then Ps�−�kBTe /Wi���Wi /�V�. This corresponds
to a positive contribution that is linear in Te. This is observed
in the DFT calculations at high temperatures �see Fig. 4�.
Generally, the increase in height of the local density of states
hi=Na /Wi that occurs at larger volumes �lower density� leads
to an increase in the electronic entropy, making a positive
contribution to the pressure.

3. Modified embedding function

We now have a simple model for the changes in the elec-
tronic free energy F with electron temperature Te brought
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about by the band energy Eband and the entropic contribution
−TeS. The expressions for Eband and S obtained above are
based on a rectangular model density of states and its exten-
sion to accommodate states above the d band. This local
density of states �associated with each atom i� is character-
ized by a rectangle with area Na and width Wi. The second-
moment theorem relates the width Wi to a sum of hopping
integrals between atom i and neighboring atoms. The rela-
tionship between a rectangular density-of-states model and
the Finnis-Sinclair model was established in Sec. III B
through the connection Wi� ��i

�2��1/2� ��i�1/2.
We subsume the band energy Eband and the entropic con-

tribution to the free energy −TeS into a modified embedding
function that depends on the electronic temperature
Femb��i ,Te�. At low electronic temperatures we require the
embedding function to reduce to the Finnis-Sinclair form,

Femb��i,Te� → − A��i. �25�

At low temperatures, the sum Eband
�i� −TeS

�i� reduces to the
band energy of the rectangular model in Eq. �13�. In order to
map the embedding function of the existing empirical Finnis-
Sinclair potential �corresponding to Te=0� onto the rectangu-
lar model, we require the empirical embedding function to
equal the band energy of the rectangular model at Te=0. This
gives the equation

−
NeWi

4Na
�Na − 2Ne� = − A��i. �26�

We express the proportionality between the second moment
�i

�2� and the empirical density function �i using a constant of
proportionality c,

�i
�2� =

�i

c
. �27�

Furthermore, the width of a rectangular distribution with area
Na is related to its second central moment by Wi

2

= �12 /Na��i
�2�. Using these relations in Eq. �26� allows us to

obtain a value for c that relates the empirical embedding
function of the Finnis-Sinclair potential to the Te=0 band
energy for a rectangular density-of-states model with a width

Wi =�12

Na

�i

c
. �28�

The equation for c obtained in this way is

c =
3Ne

2�Na − 2Ne�2

4A2Na
3 . �29�

This same value for c is assumed to hold for all electronic
temperatures Te and allows the model for the electron-
temperature-dependent band energy and entropy obtained
above to be used as an electron-temperature-dependent
modified embedding function,

Femb��i,Te� = Eband
�i� − TeS

�i�, �30�

where Eband
�i� and S�i� are the expressions in Eqs. �19� and �24�,

respectively, with the value for �i−� in Eq. �22�. For a given
atomic configuration, the local density �i is calculated using

a pairwise sum involving the original unmodified Finnis-
Sinclair empirical function 
�rij�. This is related to Wi,
which appears in equations for Eband

�i� , S�i�, and �i−� through
Eq. �28�.

4. Repulsive term

The repulsive term in the electronic free energy is attrib-
uted to

Erep = −
1

2
EH −
 ��r�Vxcdr + Exc + EZZ. �31�

The core-core interaction energy EZZ is clearly repulsive in
nature. Since the electron-electron interaction in EH is repul-
sive, its negative makes an attractive contribution, which can
be said to screen the core-core repulsion. In the empirical
tight-binding band model, total sum of these four terms is
treated in terms of a sum of empirical repulsive pair poten-
tials. We will follow this approach and attribute these terms
to the pairwise sum in the Finnis-Sinclair potential

Erep =
1

2�
i,j

V�rij� . �32�

The electron temperature dependence of these terms is as-
sumed to be negligible. This approach was also taken in the
tight-binding treatments of Jeschke et al.,13 where only the
band energy dependence on Te was accounted for, and the
repulsive term was assumed to be independent of electronic
temperature. There will be electron-temperature dependence
in the Hartree and exchange-correlation terms due to changes
in the electron density �Eq. �5��. However, it is assumed that
the repulsive interaction is dominated by the core-core repul-
sion, which is unaffected by the electronic excitations in the
valence band.

In summary, the new interatomic potential consists of the
pairwise functions 
�rij� and V�rij� of the Finnis-Sinclair
potential27 and a modified embedding function Femb��i ,Te�.

�r� is used for the calculation of the local density �i and
V�r� gives the repulsive part of the interatomic potential.
Both of these functions are taken directly from the original
Finnis-Sinclair model and are assumed to be independent of
the electronic temperature Te. The embedding function
Femb��i ,Te� depends on Te and reduces to the original square-
root form �Eq. �9�� at low temperatures.

IV. FITTING

A. Fitting parameters

We now have the ingredients for an electron-temperature-
dependent interatomic potential. It is based on modifying an
empirical Finnis-Sinclair potential that is adequate at low
electron temperatures �Te=0�.

The modified embedding function contains the parameters
Ne and Na corresponding to the number of electrons at each
atomic site and the area of the rectangular portion of the
local density of states, respectively. The embedding function
is based on a model density of states that is highly simplified.
The density of states implicit in finite-temperature DFT cal-
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culations has a much more complicated structure. In addition
to this, the density of states changes with electron tempera-
ture Te, as the electron density changes when the one-
electron orbitals are occupied differently. These features will
have an effect on how the free energy F changes with elec-
tronic temperature.

As the form of the density of states used in the model
does not capture all of the details of the DFT calculation, we
use Ne and Na as free parameters to fit the modified potential
to the finite-temperature DFT data obtained in Sec. II. In
other words Ne and Na are chosen to make the simplified
model �based on the rectangular density of states� reproduce
the finite-temperature DFT data.

In principle we expect these quantities not to deviate too
much from the underlying physical parameters despite the
model for the density of states being highly simplified. There
are six valence electrons in tungsten corresponding to
5d46s2. Since it is likely that all valence electrons are af-
fected by the nondegenerate Fermi-Dirac distribution at high
temperatures, we expect Ne not to deviate too much from 6.
The model density of states does not unambiguously distin-
guish between different parts of the valence band. If the rect-
angular part corresponds approximately to the d band portion
of the density of states, then we expect Na not to deviate too
much from 5. Similarly, the width Wi evaluated at the equi-
librium density for tungsten would be expected to be of a
similar magnitude to values quoted in the literature for the
width of the d band of tungsten, which lie in the range of
9.3–11.4 eV.28,34

B. Fitting methodology and results

An important question is which features of the DFT data
we require the model to reproduce. The model interatomic
potential consists of

F = �
i

Femb��i,Te� +
1

2�
i�j

V�rij� , �33�

where the sums run over all atoms in the system. For a given
atomic configuration, this expression represents the elec-
tronic free energy of the system, including the ion-ion inter-
actions. Evaluating Eq. �33� for a perfect bcc lattice over a
range of lattice parameters and at various electronic tempera-
tures should reproduce the F-V curves from finite-
temperature DFT calculations described in Sec. II. An arbi-
trary constant in the free energy can be eliminated by
choosing the minimum free energy of the Te=300 K curves
to be zero for the DFT data as well as the model interatomic
potential.

A preliminary fit to the DFT free-energy data resulted in
fit 1 �parameters are given in Table I� and reveals that the
model qualitatively reproduces the F-V curves �see Fig. 3�.
As discussed earlier, a significant contribution to the change
in electronic free energy with Te corresponds to constant
shifts of the F-V curves. These shifts are well reproduced by
the model after fitting; however the gradient dF /dV is gen-
erally underestimated by the model. The free-energy shifts
reflect changes in the system free energy with electronic tem-
perature, but they are not relevant to the dynamics of the

atoms as forces depend on derivatives of the free energy with
respect to atomic coordinates. Although there will be tem-
perature gradients in the system, we expect the resulting spa-
tial differences in free energy to be insignificant on the
length scale relevant for interatomic forces.

The force on atom i is given by f�i�=−�iF, where �i rep-
resents a derivative with respect to the coordinates of atom i.
In this model, the temperature dependence comes from the
modified embedding function Femb, corresponding to Eband
−TeS, while the repulsive contribution Erep is assumed to be
independent of Te. The contribution to the force stemming
from the embedding function is given by

femb
�i� = − �i�

j

Femb�� j,Te� = − �
j

dFemb

d� j
�i� j . �34�

The electronic pressure defined as P=−�F /�V is of more
relevance to the interatomic forces than the free energy itself.
We may calculate the contribution to the pressure stemming
from the embedding function as

Pemb = − �
i

�Femb��i,Te�
�V

= − �
i

dFemb

d�i

��i

�V
, �35�

where �i is evaluated for a perfect lattice at a given volume
V. It can be seen that both the pressure and the interatomic
forces depend on the derivative dFemb /d�i. By looking at a
perfect lattice over a range of volumes V, we are using global
changes in �i to shed light on what happens when �i changes
due to changes in the local atomic environment.

In light of this, we fit the model to the pressure obtained
from the DFT calculations. In particular, we require the po-
tential to reproduce the increase in pressure with Te at the
volume corresponding to the equilibrium volume at Te
=300 K denoted by Veq300. This pressure is experienced by
an electronically excited region that cannot expand. It will
also determine the initial rate of expansion of an irradiated
metal surface into the vacuum.

The parameters obtained by fitting to the DFT electronic
pressure at Veq300=15.86 Å3 /atom resulted in fit 2 �param-
eters are given in Table I�. The results of this fit can be seen
in Figs. 4 and 5. The pressure at Veq300 is reproduced well by
the model for the full range of electronic temperatures. From
Fig. 5 it can be seen that at large deviations from Veq300, the
model pressure begins to deviate from the DFT pressure.
This means that the model is less successful when there are
large deviations from the equilibrium density. It should also
be noted that this fit did not reproduce the DFT free-energy
offsets accurately, as the fit shown in Fig. 3, but underesti-

TABLE I. Model parameters obtained using the two different
fitting procedures. Fit 1: model is fit to the DFT F-V curves. Fit 2:
model is fit to the pressure at Veq300. In fitting, the following con-
straints on Ne and Na were imposed: 0.1�Ne
10 and Na�Ne /2.

DFT data input Ne Na

Fit 1 F-V curves 4.8690 4.2375

Fit 2 P�Veq300� values 6.5826 7.3592
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mated their magnitude significantly. However, this fitting re-
sult is preferred, as the pressure �and the shape of the free-
energy curve� is of more relevance to the interatomic forces
than the free energy itself. The values obtained for Ne and Na
do not deviate significantly from what is expected from the
electronic structure of tungsten. At the equilibrium density
for 300 K, these values correspond to Wi=5.8 eV and a
height of the density of states hi=1.26 eV−1.

It can be seen from Fig. 4 that the entropic contribution to
the pressure is the dominant contributor to the increase in
pressure at high electronic temperatures. The band energy
makes a negative contribution to pressure with increasing Te.
Even though the fit involved only the total pressure, the sub-
division between the energetic and entropic contributions in
the model is correct since these contributions to the DFT
pressure are reproduced by the model as well.

V. CONCLUSION

We have constructed an electron-temperature-dependent
interatomic potential that can be used in classical molecular
dynamics simulations of tungsten under conditions of elec-
tronic excitation. The potential, which is based on a simpli-
fied model for the density of states, has been empirically
fitted to reproduce features of the electronic free energy ob-
tained from finite-temperature DFT calculations. Specifi-
cally, the increase in pressure with electronic temperature
near the equilibrium volume for low temperatures is repro-
duced for a very wide range of electronic temperatures. The
model correctly captures the temperature dependence of the
energetic and entropic contributions to the electronic pres-
sure. It also captures the initial increase in equilibrium lattice
parameter with electronic temperature and the subsequent
loss of a free-energy minimum at high electronic tempera-
tures.

The results indicate that the model contains some of the
main factors leading to changes in the free energy with elec-
tron temperature in W. These ingredients are the nondegen-
erate Fermi-Dirac distribution describing the population of
single-particle states at high temperatures, the imposition of
local charge neutrality, and the changes in the height of the
local density of states at a given site with changes in the
local density of atoms. The model correctly captures the fact
that the increase in pressure with electronic temperature is
dominated by the electronic entropy. This will give rise to
repulsion between atoms in an electronically excited region.
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FIG. 4. �Color online� Full pressure and contributions to pres-
sure, against Te at the equilibrium volume for low temperatures
Veq300. Points are DFT data: total pressure P, energetic contribution
PE, and entropic �−TeS� contribution PS. Lines are a fit of the model
to the DFT pressure at Veq300 �fit 2�. In addition to the total energy,
the contributions made by band energy Pband and repulsion Prep are
shown for the model but not for the DFT results.

1.0�103K

8.0�104K

10 15 20 25 30
�80

�60

�40

�20

0

V ��3�atom�

F
�e

v�
at

om
�

FIG. 3. �Color online� Free energy against volume at temperatures Te= �0.1,0.5,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8�	104 K. Points are DFT data; lines
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At low electron temperatures describing the metal in the ab-
sence of electronic excitation, the potential reduces to the
empirical Finnis-Sinclair potential for tungsten.27

The interatomic potential developed here can be incorpo-
rated into classical molecular dynamics simulations. For a
given electronic temperature, the potential is equivalent to an
EAM potential. The embedding function has been con-
structed to represent the band energy and entropic contribu-
tions to the electronic free energy for a given electronic tem-
perature.

The approach developed here demonstrates a scheme for
incorporating the electron temperature into the framework of
EAM potentials through the use of a modified embedding
function and finite-temperature density functional theory
calculations. In principle this approach could be used to
construct a numerically tabulated electron-temperature-
dependent embedding function directly without the use of an
intermediate model as was done here.

The simple model used here to construct the electron-
temperature-dependent embedding function is applicable to
transition metals such as W, where the dominant effect of
elevated electronic temperature is smearing of the Fermi-
Dirac distribution. For noble metals such as Au, more subtle
effects causing changes in the shape of the density of states
are important.15 Magnetic transition metals are also expected
to have more complicated behavior.

The potential developed here could be used in molecular
dynamics simulations, in which the electronic temperature
evolves in time and space during the simulation itself. This
relates to the framework currently used in two-temperature

model molecular dynamics �2TM-MD� simulations.36–44

In such treatments, the electronic temperature is typically
defined within coarse-grained electron temperature cells
�Refs. 42–44�, each of which contains approximately
102–103 atoms. The electron temperature evolves according
to a diffusion equation, which is iterated numerically at each
MD time step. The interatomic potential developed here
could be used in such simulations, enabling the interatomic
forces experienced by atoms to be modified interactively,
according to the electron temperature in their respective
coarse-grained cell. This amounts to a computationally inex-
pensive method that can be applied to the study of nonther-
mal effects in the dynamics of electronically excited metals.

In the absence of a temporally evolving electron tempera-
ture, the method used here is a means of extrapolating from
a set of finite-temperature DFT calculations to calculate a
wide range of properties very efficiently for any given elec-
tronic temperature. The effective interatomic potential could
be used to predict changes in defect formation energy, melt-
ing temperature, and vibrational properties with electronic
temperature obtained previously with other methods,15,16

with very little additional computational expense.
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